内存技术_虚拟内存技术
内存技术是一个非常重要的话题,可以从不同的角度进行思考和讨论。我愿意与您分享我的见解和经验。
1.手机内存融合技术是什么意思?
2.现在电视搭载DDR4有什么标准,DDR4与DDR3在电视上又有什么标准性区别
3.什么是内存?
4.电脑的内存是怎么讲的?
5.从技术角度,DDR5内存主要有哪些方面升级?
6.内存DDR4和DDR3的区别
手机内存融合技术是什么意思?
随着科技的进步,手机方面的技术也是得到了很大的提升,从最开始的运行内存不被大家所重视,到现在运行内存都达到了12个G的高度,这样的一个运行内存可以让我们同时运行超数10款应用软件和游戏,只要搭上一块好的芯片,那就都不会出现卡顿的情况。而内存融合技术则是为了弥补内存不足的情况而设计的,确实也很人性化,但是他用久了之后,会不会对手机有什么不好的影响呢?我们就一起来聊一聊这个话题,或许能够解除你的疑惑。所谓的手机内存融合技术就是内存与内存进行融合,就比如说当我们的运行内存不够的情况下,可以临时调用其他的储存来维持手机的高速运行和流畅,这一点设计我就问你强不强大?因为以前的手机运行内存它都是固定的,要不然就是4G和8G,但现在很多的是应用软件或者是游戏,更多的是100兆200兆起步,他们用久了还会存在一个运行,缓存也可能会达到几百个兆。所以他对手机没有任何的影响,可以放心的使用这个功能。
我个人认为如果平时处理的工作比较高强度的话,那么手机的内存容量,因为他能够帮我们快速的去解决这些内存不足的情况,导致我们应用软件使用不了。特别是一些重要的应用软件,在没有保存的情况下,突然之间给你提供了那头都要气大。
总的来说,手机的内存融合技术在很多的手机上都有采用,如果对手机有不好的影响,那么他们就不会开发出这个功能了。要知道程序员们的开发,可是头很痛的,如果这个功能已经问世了,我们不去使用无疑是在浪费手机。
现在电视搭载DDR4有什么标准,DDR4与DDR3在电视上又有什么标准性区别
什么是CMA内存分配技术
CMA(Contiguous Memory Allocator)是智能连续内存分配技术,是Linux Kernel内存管理系统的扩展,目的在于解决视频播放(特别对于4K视频)需要预留大量连续内存导致运行内存紧张的问题。
1、 简介
连续内存分配器(CMA - Contiguous Memory Allocator)是一个框架,允许建立一个平台无关的配置,用于连续内存的管理。然后,设备所需内存都根据该配置进行分配。
这个框架的主要作用不是分配内存,而是解析和管理内存配置,以及作为在设备驱动程序和可插拔的分配器之间的中间组件。因此,它是与任何内存分配方法和分配策略没有依赖关系的。
2、为什么需要?
在嵌入式设备中,很多设备都没有支持scatter-getter和IO map,都需要连续内存块的操作。如设备:摄像机,硬件视频解码器,编码器等。
这些设备往往需要较大的内存缓冲区(如:一个200万像素的高清帧摄像机,需要超过6M的内存),该kmalloc内存分配机制对于这么大的内存是没有效果的。
一些嵌入式设备对缓冲区有一些额外的要求,比如:在含有多个内存bank的设备中,要求只能在特定的bank中中分配内存;而还有一些要定内存边界对齐的缓存区。
近来,嵌入式设备有了较大的发展(特别是V4L领域),并且这些驱动都有自己的内存分配代码。它们众多的大多数都是采用bootmem分配方法。CMA框架企图采用统一的连续内存分配机制,并为这些设备驱动提供简单的API,而且是可以定制化和模块化的。
3、设计
CMA主要设计目标是提供一个可定制的模块化框架,并且是可以配置的,以适应个别系统的需要。配置指定的内存区域,然后将这些内存分配给制定的设备。这些内存区域可以共享给多个设备驱动,也可以专门分配一个。这是通过以下方式实现的:
1) CMA的核心不是处理内存分配和空闲空间管理。专用分配器是用来处理内存分配和空闲内存管理的。因此,如果现有的解决方案不符合给定的系统,那么可以开发一种新的算法,这种算饭可以很容易地插入到CMA框架中。
所提出的解决方案中包括一个最适算法(best-fit)的一个实现。
2)CMA允许运行时配置即将分配的内存区域。内存区域都是经由命令行给出的,所以可以很容易地改变它,而不需要重新编译内核。
每个地区都有自己的大小,对齐标准,起始地址(物理地址)和对应该内存区域的内存分配算法。
这意味着同一时刻可以有多中机制在运行,如果在一个平台上同时运行多个不同的设备,这些设备具有不同的存储器使用特性,那么局可以匹配最好的算法。
3)当设备请求内存时,设备必须“自我介绍”,即附带自己的信息以告知CMA。这样CMA可以知道谁分配内存。这允许系统架构师来指定哪个移动设备应该使用哪些存储区。
设备也可以指定一个“类”内存区域,这使得系统更容易配置,进而一个单一的设备可能使用来自不同内存区域的内存。例如,一个视频解码器驱动程序可能要分配一些共享的缓冲区,那么从第一个bank中分配一些,再从第二个bank中分配一些,可以获得尽可能高的内存吞吐量。
4、使用场景
虚构一个使用了CMA的系统,来观察一下其是如何使用和配置的。
有一个携带硬件视频解码器和摄像机的平台,每个设备在最坏的情况下可能需要20M的内存。在该系统中,这两个设备是不会同时使用的,并且内存是可能共享的。使用下面的两个命令行:
cma=r=20M cma_map=video,camera=r
第一个CMA指令是分配20M的内存,并且内存分配器是有效的;第二个表示,名称为“video”和“camera”的两个驱动从之前定义的内存区域中分配内存。
因为两者共享同一内存区域,相比于每个设备保留20M的内存区域,使得系统节省了20M的内存空进。
但是随着系统的发展和进化,平台上可能同时运行视频解码器和摄像机,那么20M的内存区域就不能满足需要了。那么可以通过命令快速解决:
cma=v=20M,c=20M cma_map=video=v;camera=c
从该解决方案中也可以看出CMA是如何为每一个设备分配所需的私有内存池的。
分配机制也能通过一种相似的方式进行替换。在测试中发现,当给定的内存区域大小为40M时,系统运行一段时间后,碎片会成为一个问题。因此,为了满足所需要求的缓存区大小,需要预留一个较大的缓存区。
但是不幸的是,你需要w设置一个新的分配算法——Neat Allocation Algorithm(简写na),这两个设备对于内存有30M的需求:
cma=r=30M:na cma_map=video,camera=r
从上述示例可以看出,当CMA提供的算法不满足要求时,如何配置自己的分配算法,而不需要修改CMA或重编内核。
传统盒子内存技术的作用
目前市场上支持4K超高清分辨率的产品,一般的做法都会预留部分内存出来,这部分预留的内存平时不用,只在播放4K超高清视频上使用。不过这样也会造成正常功能的内存减少,在负担大型任务时会影响流畅性。
CMA内存分配技术的作用
小米盒子1G增强版使用了优化后的CMA智能连续内存分配技术,平时会将为4K播放所预留的大块连续内存分配给其他程序使用,充分保证系统的流畅性,在播放4K视频时快速将内存分配给视频播放程序,也保证了4K播放的流畅性。
小米盒子1G增强版使用的是小米公司优化的CMA内存分配技术,使得小米盒子的内存使用更加有效率,完善了Linux内核的内存管理策略,在做好小米盒子产品的本身,也对Linux技术发展做出了很大贡献。
什么是内存?
DDR4内存的标准规范仍未最终定夺。三星这条样品属于UDIMM类型,容量为2GB,运行电压只有1.2V,工作频率为2133MHz,而且凭借新的电路架构最高可以达到3200MHz。相比之下,DDR3内存的标准频率最高仅为1600MHz,运行电压一般为1.5V,节能版也有1.35V。仅此一点,DDR4内存就可以节能最多40%。
DDR4相比DDR3最大的区别有三点:
1、16bit预取机制(DDR3为8bit),同样内核频率下理论速度是DDR3的两倍;
2、更可靠的传输规范,数据可靠性进一步提升;
3、工作电压降为1.2V,更节能。
扩展资料:
根据此前的规划,DDR4内存频率最高有可能高达4266MHz,电压则有可能降至1.1V乃至1.05V。
三星表示,这条DDR4内存使用了曾出现在高端显存颗粒上的“PseudoOpenDrain”(虚拟开漏极)技术,在读取、写入数据的时候漏电率只有DDR3内存的一半。
三星称,2010年12月底已经向一家控制器制造商提供了这种DDR4内存条的样品进行测试,并计划与多家内存厂商密切合作,帮助JEDEC组织在2011年下半年完成DDR4标准规范的制定工作,预计2012年开始投入商用。
参考资料:
电脑的内存是怎么讲的?
内存(Memory)是计算机的重要部件,也称内存储器和主存储器,它用于暂时存放CPU中的运算数据,以及与硬盘等外部存储器交换的数据。它是外存与CPU进行沟通的桥梁,计算机中所有程序的运行都在内存中进行,内存性能的强弱影响计算机整体发挥的水平。只要计算机开始运行,操作系统就会把需要运算的数据从内存调到CPU中进行运算,当运算完成,CPU将结果传送出来。内存的运行决定计算机整体运行快慢。
从技术角度,DDR5内存主要有哪些方面升级?
分类: 电脑/网络 >> 硬件
解析:
内存,或内存储器,又称为主存储器,是关系到计算机运行性能高低的关键部件之一,无疑是非常重要的。为了加快系统的速度,提高系统的整体性能,我们看到,计算机中配置的内存数量越来越大,而内存的种类也越来越多。
内存新技术
计算机指令的存取时间主要取决于内存。对于现今的大多数计算机系统,内存的存取时间都是一个主要的制约系统性能提高的因素。因此在判断某一系统的性能时,就不能单凭内存数量的大小,还要看一看其所用内存的种类,工作速度。
有关内存的名词
关于内存的名词众多。为了便于读者查阅,下面集中进行介绍。
ROM:只读存储器
RAM(Random Access Memory):随机存储器
DRAM(Dynamic RAM):动态随机存储器
PM RAM(Page Mode RAM):页模式随机存储器(即普通内存)
FPM RAM(Fast Page Mode RAM):快速页模式随机存储器
EDO RAM(Extended Data Output RAM)扩充数据输出随机存储器
BEDO RAM(Burst Extended Data Output RAM):突发扩充数据输出随机存储器
SDRAM(Sychronous Dynamic RAM):同步动态随机存储器
SRAM(Static RAM):静态随机存储器
Async SRAM(Asynchronous Static RAM):异步静态随机存储器
Sync Burst SRAM(Synchronous Burst Stacic RAM):同步突发静态随机存储器
PB SRAM(Pipelined Burst SRAM):管道(流水线)突发静态随机存储器
Cache:高速缓存
L2 Cache(Level 2 Cache):二级高速缓存(通常由SRAM组成)
VRAM(Video RAM):视频随机存储器
CVRAM(Cached Vedio RAM):缓存型视频随机存储器
SVRAM(Synchronous VRAM):同步视频随机存储器
CDRAM(Cached DRAM):缓存型动态随机存储器
EDRAM(Enhanced DRAM):增强型动态随机存储器
各种内存及技术特点
DRAM 动态随机存储器
DRAM主要用作主存储器。长期以来,我们所用的动态随机存储器都是PM RAM,稍晚些的为FPM RAM。为了跟上CPU越来越快的速度,一些新类型的主存储器被研制出来。它们是EDO RAM、BEDO RAM、SDRAM等。
DRAM芯片设计得象一个二进制位的矩阵,每一个位有一个行地址一个列地址。内存控制器要给出芯片地址才能从芯片中读出指定位的数据。一个标明为70ns的芯片要用70ns的时间读出一个位的数据。并且还要用额外的时间从CPU得到地址信息设置下一条指令。芯片制作技术的不断进步使这种处理效率越来越高。
FPM RAM 快速页模式随机存储器
这里的所谓“页”,指的是DRAM芯片中存储阵列上的2048位片断。FPM RAM是最早的随机存储器,在过去一直是主流PC机的标准配置,以前我们在谈论内存速度时所说的“杠7”,“杠6”,指的即是其存取时间为70ns,60ns。60ns的FPM RAM可用于总线速度为66MHz(兆赫兹)的奔腾系统(CPU主频为100,133,166和200MHz)。
快速页模式的内存常用于视频卡,通常我们也叫它“DRAM”。其中一种经过特殊设计的内存的存取时间仅为48ns,这时我们就叫它VRAM。这种经过特殊设计的内存具有“双口”,其中一个端口可直接被CPU存取,而另一个端口可独立地被RAM“直接存取通道”存取,这样存储器的“直接存取通道”不必等待CPU完成存取就可同时工作,从而比一般的DRAM要快些。
EDO RAM 扩充数据输出随机存储器
在DRAM芯片之中,除存储单元之外,还有一些附加逻辑电路,现在,人们已注意到RAM芯片的附加逻辑电路,通过增加少量的额外逻辑电路,可以提高在单位时间内的数据流量,即所谓的增加带宽。EDO正是在这个方面作出的尝试。扩展数据输出(Extended data out?EDO,有时也称为超页模式?hyper-page-mode)DRAM,和突发式EDO(Bust EDO-BEDO)DRAM是两种基于页模式内存的内存技术。EDO大约1996年被引入主流PC机,从那以后成为许多系统厂商的主要内存选择。BEDO相对更新一些,对市场的吸引还未能达到EDO的水平。
EDO的工作方式颇类似于FPM DRAM,EDO还具有比FPM DRAM更快的理想化突发式读周期时钟安排。这使得在66MHz总线上从DRAM中读取一组由四个元素组成的数据块时能节省3个时钟周期。
BEDO RAM 突发扩充数据输出随机存储器
BEDO RAM,就像其名字一样,是在一个“突发动作”中读取数据,这就是说在提供了内存地址后,CPU假定其后的数据地址,并自动把它们预取出来。这样,在读下三个数据中的每一个数据时,只用仅仅一个时钟周期,CPU能够以突发模式读数据(采用52ns BEDO和66MHz总线),这种方式下指令的传送速度就大大提高,处理器的指令队列就能有效地填满。现今这种RAM只被VIA芯片组580VP,590VP,860VP支持。这种真正快速的BEDO RAM也是有缺陷的,这就是它无法与频率高于66MHz的总线相匹配。
SDRAM 同步动态随机存储器
SDRAM 可以说是最有前途的一种内部存储器,当前这种RAM很受欢迎。目前市面上的绝大多数奔腾级主板和Pentium Ⅱ主板都支持这种内存。就像这种内存的名字所表明的,这种RAM可以使所有的输入输出信号保持与系统时钟同步。而在不久以前,这只有SRAM 才能办到。
SDRAM与系统时钟同步,采用管道处理方式,当指定一个特定的地址,SDRAM就可读出多个数据,即实现突发传送。
具体来说,第一步,指定地址;第二步,把数据从存储地址传到输出电路;第三步,输出数据到外部。关键是以上三个步骤是各自独立进行的,且与CPU同步,而以往的内存只有从头到尾执行完这三个步骤才能输出数据。这就是SDRAM高速的秘诀。SDRAM的读写周期为10至15ns。
SDRAM基于双存储体结构,内含两个交错的存储阵列,当CPU从一个存储体或阵列访问数据的同时,另一个已准备好读写数据。通过两个存储阵列的紧密切换,读取效率得到成倍提高。1996年推出的SDRAM最高速度可达100MHz,与中档Pentium同步,存储时间短达5~8ns,可将Pentium系统性能提高140%,与Pentium 100、133、166等每一档次只能提高性能百分之几十的CPU相比,换用SDRAM似乎是更明智的升级策略。目前市场上的奔腾级以上的主板几乎都支持SDRAM。
SDRAM不仅可用作主存,在显示卡专用内存方面也有广泛应用。对显示卡来说,数据带宽越宽,同时处理的数据就越多,显示的信息就越多,显示质量也就越高。以前用一种可同时进行读写的双端口视频内存(VRAM)来提高带宽,但这种内存成本高,应用受到很大限制。因此在一般显示卡上,廉价的DRAM和高效的EDO DRAM应用很广。但随着64位显示卡的上市,带宽已扩大到EDO DRAM所能达到的带宽的极限,要达到更高的1600×1200的分辨率,而又尽量降低成本,就只能采用频率达66MHz、高带宽的SDRAM了。
SDRAM也将应用于共享内存结构(UMA),一种集成主存和显示内存的结构。这种结构在很大程度上降低了系统成本,因为许多高性能显示卡价格高昂,就是因为其专用显示内存成本极高,而UMA技术将利用主存作显示内存,不再需要增加专门显示内存,因而降低了成本。
SRAM Statu RAM 静态随机存储器
按产生时间和工作方式来分,静态随机存储器也分为异步和同步。在一定的纳米制造技术下,SRAM容量比其他类型内存低,这是因为SRAM需要用更多的晶体管存储一个位(bit),因而造价也贵得多。静态随机存储器多用于二级高速缓存(Level 2 Cache)。
1. Async SRAM 异步静态随机存储器
自从第一个带有二级高速缓存(Cache)的386计算机出现以来,这种老型号的属于“Cache RAM(缓存型随机存储器)”类型的内存就开始应用了。异步静态随机存储器比DRAM快些,并依赖于CPU的时钟,其存取速度有12ns、15ns和18ns三种,值越小,表示存取数据的速度越快。但在存取数据时,它还没有快到能够与CPU保持同步,CPU必须等待以匹配其速度。
2. Sync Burst SRAM同步突发静态随机存储器
在计算机界存在这样的争论:Sync Burst SRAM 和FB SRAM 谁更快些?诚然,在总线速度为66MHz的系统上,Sync Burst SRAM确实是最快的,但当总线速度超过66MHz时(比如Cyrix公司的6x86p200+型号),Sync burst SRAM就超负荷了,大大低于PB SRAM 传输速度。因此用现行的Pentium主板(总线速度为66MHz),我们应该采用Sync Burst SRAM,这样效率最高、速度最快。但目前的问题是:生产支持Sync Burst SRAM的主板供应商很少,所以能支持Sync Burst SRAM的主板的价格都很高。
3. PB SRAM 管道突发静态随机存储器
管道(Pipeline,或流水线)的意思是:通过使用输入输出寄存器,一个SRAM可以形成像“管道”那样的数据流水线传输模式。在装载填充寄存器时,虽然需要一个额外的启动周期,但寄存器一经装载,就可产生这样的作用:在用现行的地址提供数据的同时能提前存取下一地址。在总线速度为75MHz和高于75MHz时,这种内存是最快的缓存型随机存储器(Cache RAM)。实际上,PB SRAM可以匹配总线速度高达133MHz的系统。同时,在较慢的系统中,PB SRAM也并不比Sync Burst SRAM慢多少。
应用PB SRAM,可达到4.5到8ns的“地址-数据”时间。
L2 Cache 二级高速缓存
现今解决CPU与主内存之间的速度匹配的主要方法是在CPU与DRAM间加上基于SRAM的二级高速缓存,这种内存系统可以承担85%的内存请求,而不需CPU增加额外的等待周期。
在用DOS、Windows3.1、Windows3.2和WFW3.11(Windows for Workgroups)作为主要的操作系统时,确实没有必要设置高于256KB的L2 Cache。但自从Windows95操作系统推出以来,经测试,在系统的RAM只有16MB时,设置512KB的缓存比256KB的缓存更能大大提高系统的性能。
再者,应用多媒体软件日益普遍,而以前的系统不能缓存大多数图形和视频信息,这使得CPU不断地与速度较慢的主内存打交道,降低了系统的性能,而增加CPU的二级高速缓存就能解决这个问题。
目前,人们越来越倾向应用32位的操作系统。在多任务的操作系统中,增加L2 Cache直到2MB都具有实际意义,能够增强系统性能,这是因为应用程序越来越大,并且越来越多的程序在同一时间运行,当CPU在多任务之间切换时,如果Cache没有足够大的空间来装入所有被执行代码,就必须从速度非常慢的主内存器获得它所需的信息,多任务操作系统就不能充分发挥其作用。因此,在应用现代的操作系统时,在系统装入512KB的L2 Cachee是计算机系统发展的需要。
基于以下特点,Sync Burst SRAM比Async SRAM更适合作二级高速缓存:
(1)同步于系统时钟
(2)突发能力
(3)管道能力
以上这些特点使得微处理器在存取连续内存位置时用同步SRMA比异步SRAM更快。目前,有些RAM供应商提供的3.3V异步的SRAM的“时钟到数据时间”(clock-to-data指开始加入时钟脉冲到数据输出的时间)为15ns,而采用类似技术的同步SRAM的“时钟到数据时间”甚至不到6ns。
随着总线速度的增加,性能价格比最佳点的SRAM技术是从异步到同步,再到管道同步的。
但目前只有少数供应商能提供采用同步的SRAM,所以在系统性能不是非常重要时,设计者在总线速度为50MHz到66MHz时采用“管道同步”技术的内存是一种明智的选择。
有些内存设计方案把Cache、DRAM、SRAM结合起来,如CDRAM、EDRAM、CVRAM、SVRAM、EDO SRAM、EDO VRAM。也有些内存设计方案在存储器中增加了一些内置式微处理器,如智能RAM(Smart RAM)、3D RAM(用于3维视频信号处理的RAM)、RDRAM(Rambus DRAM)、WRAM(Windows RAM,一种采用双端口内存视频加速技术的内存)。内存的多样性可见一斑,不一而论。
快闪存储器,快擦写存储器和铁电体随机存储器
快闪存储器是1983年推出的电可擦非易失性半导体存储器,它采用一种非挥发性存储技术,即若不对其施加大电压进行擦除,可一直保持其状态,在不加电状态下可安全保存信息长达十年;它也具有固态电子学特性,即没有可移动部件,抗震性能好;同时,它具有优越的性能,它的存取时间仅为30ns。与以往的电可擦存储器EEPROM相比,快闪存储器的最大差别是采用了块可擦除的阵列结构,这种结构不仅使其有了快的擦除速度,而且具有了像EEPROM那样的单管结构的高密度,由此带来了低的制造成本和小的体积。快闪存储器兼有了ROM和RAM二者的性能及高密度,是目前为数不多的同时具备大容量、高速度、非易失性、可在线擦写特性的存储器。
快闪存储器多用于系统的BIOS、Modem(调制解调器)和一些网络设备(Hub、路由器)。
铁电体随机存储器也采用非挥发性存储技术,在生产中使用了铁氧体,它优越于快闪存储器的特点是其经过多次写操作后性能不退化,而快闪存储器存在退化问题。这使得铁电体随机存储器更具有广阔的前景。
各种内存条及技术特点
目前市场上计算机产品升级频繁。CPU已进入奔腾时代,与此同时,内存系列产品的技术与性能也逐渐更新提高。
内存条的格式分30线、72线和168线。当今流行的内存条有EDO和SDRAM。现在的Pentium级以上的计算机在设计上均支持EDO和SDRAM内存条。
衡量内存条技术的一个重要指标是DRAM芯片的存取时间,常见的有60ns、70ns、80ns,数值越小,速度越快。
SIMM内存条
SIMM内存条的全称为单列存储器模块,是一块装有3~36片DRAM的电路板。早期PC机的主存储器采用的是双列直插封装(DIP)的DRAM芯片,因其安装位置较大,不便于扩展,故现在普遍采用SIMM内存条,安装一条SIMM相当于安装原来的9片DIP型DRAM芯片。目前在SIMM内存条集成的多为EDO/FPM内存,其主要参数有:
1.引脚数
SIMM内存条上的引脚,俗称为“金手指”。使用时,内存条引脚数必须与主板上SIMM槽口的针数相匹配。SIMM槽口有30针、72针两种,相对应内存条的引脚有30线和72线两种。在72针系统中,有奇偶校验使用36位的内存条,无奇偶校验使用32位的内存条;在30针的普通系统中,有奇偶校验使用9位的内存条,无奇偶校验则使用8位的内存条。目前30针的SIMM内存条已被淘汰。
2.容量
30线内存条常见容量有256KB、1MB和4MB。72线内存条常见容量有4MB、8MB、16MB和32MB。30针引脚系统中,8位或9位内存条的数据宽度为8位,286、386SX、486SX CPU数据宽度为16位,因此必须成对使用;386DX、486DX CPU数据宽度为32位,因此必须4条一组使用。72针引脚系统中,32位或36位内存条的数据宽度为32位,适用于386DX、486DX和Pentium(586)微机,可以单条或成对使用。
3.速率
内存条的一个重要性能指标是速率,以纳秒(ns)表示,代表系统给予内存在无错情况下作出反应的时间。一般有60ns、70ns、80ns、120ns等几种,相应在内存条上标有“-6”、“-7”、“-8”、“-12”等字样。这个数值越小,表示内存条速度越快。只有当内存与主板速度相匹配时才能发挥最大效率。
4.奇偶校验
微机要求内存有奇偶校验,但没有奇偶校验也能运行。奇偶校验需要额外的内存芯片。选购内存条时常会听到2片、3片、真3片、假3片、8片、9片等说法,这是指内存条是否带奇偶校验。2片和8片内存条肯定不带奇偶校验;3片和9片内存条应该带奇偶校验,但有些生产厂商为了谋取更高利润,将坏的芯片作为奇偶校验,被称为假3片或假9片,假3片或假9片一般能正常使用,只是制造成本低。鉴别内存是否带奇偶校验比较简单,装好内存开机后执行BIOS SETUP程序,选择允许奇偶校验,如果机器可正常引导,则说明内存带奇偶校验,如果屏幕出现奇偶校验错的提示后死机,则说明内存不带奇偶校验。
DIMM内存条
在内存条模块生产技术上,新型的168线DIMM内存条模块为当今最流行的内存条,如下图所示。DIMM是指双在线模块,它与早期的SIMM单在线模块有着很大区别。
它使内存条在长度增加不多的情况下将模块的总线宽度增加一倍。DIMM技术的另一个优点是能够制作非常小的32位模块。这就是所谓的SODIMM。它的尺寸仅是72针的SIMM模块的一半,因此许多笔记本电脑制造商均采用SODIMM作为内存条的标准模式。
其实,无论是内存条技术的革新还是内存条模块的改造,最终目的还是适应
广大电脑用户的多层次需求。世界著名的内存条生产厂商金士顿(Kingston)公司在其产品的生产上强调了专业性与针对性,根据每一种不同的系统进行特别设计。今后的市场是技术与服务并重的市场,优秀的技术革新与优质的服务保障会使计算机用户收益无穷。
内存DDR4和DDR3的区别
DDR5最直观的感受就是频率提高了,也就是DDR4内存2133MHz的起始频率翻倍到了4800MHz,仅从数值感知来看,DDR5确实是内存技术的一次大飞跃。而从技术上来看,DDR5的内存有4大升级。1、等效率倍增,电脑跑的更快
DDR5最耀眼的技术升级就是等效频率的提升,从2133MHz直接提升到了4800MHz,随着目前对于DDR5的优化调节,未来或能达到6400MHz。频率的提升让DDR5内存的跑分有质的飞跃,无论是在读写测试还是在复制黏贴上,DDR5的曲线图无疑是最高的那个。
2、更低的工作电压和更强的超频
如果说性能的翻倍是最明显的技术升级,那么后续的内部技术和升级修正则是更深层次的超越。其中工作电压就是其中一个重要部分。DDR5的工作电压可以低至1/1V,与DDR4的1.2V相比,降低了 20%左右,这其中又有两个意义。
第一个是功耗,对于笔记本电脑来说,降低了20%具有明显的节能意义。第二个是超频,降低了启动电压,可以让后续的超频参数有更大的空间去操作,以此来提升内存的超频潜力。
3、纠错能力更强,运行更稳定
现在随着drAM芯片密度不断增加,导致数据的泄漏和数据错误增加,尤其是企业级别的运作,为了可以避免数据错误频繁发生,业界引入了ECC纠错机制来规避风险,达到提高可靠性和降低缺陷率。
4、双32位通道
引入了双32位通道的基本原理是把DDR5模块64位分成了两部分,每部分是32位,这样有效提升了内存控制器和数据访问,同时也能大幅度减少延迟,带来更好的观感体验。
新技术带来的思考:
DDR5风头早在去年就崭露头角,一直处于风口浪尖,它的到来必定会导致老产品的脱节,新老技术更替换代也正是科技行业的良性循环,同时也是不可避免的,对于业界来说,快速了解和接受新技术是行业持续的基础。
有七个方面的区别;1.外观
DDR4模组上的卡槽与 DDR3 模组卡槽的位置不同。两者的卡槽都位于插入侧,但 DDR4 卡槽的位置稍有差异,以便防止将模组安装到不兼容的主板或平台中。
2.容量
相较于DDR3,DDR4理论上每根DIMM模块能达到512GiB的容量,而DDR3每个DIMM模块的理论最大容量仅128GiB。
3.速度
DDR3的最高速率为2133MT/s ,DDR4的数据传输率也从2133MT/s起跳,最高速率在2013年的标准中暂定为4266MT/s。
5.能耗
DDR3的工作电压是1.5V,而DDR4是1.2V,并且能源节省高达40%。
6.性能
在Anandtech的独立测试中, DDR4的性能比DDR3略好,但差距很小。
7.价格
一般新的内存类型初上市时,其价格都会比较高。随着时间推移,它的价格会下降到上一代产品的水平,然后大量普及,取代上一代产品。
DDR?又称双倍速率SDRAM,Double?Date?Rate?SDRSM?DDR?SDRAM?是一种高速CMOS动态随即访问的内存。美国JEDEC?的固态技术协会于2000?年6?月公布了双数据速率同步动态存储器(DDR?SDRAM)规范JESD79,?由于它在时钟触发沿的上下沿都能进行数据传输,所以即使在133MHz的总线频率下的带宽也能达到2.128GB/s?。
DDR?不支持3.3V?电压的LVTTL?,而是支持2.5V?的SSTL2标准,它仍然可以沿用现有SDRAM?的生产体系,制造成本比SDRAM?略高一些,但远小于Rambus的价格。DDR存储器代表着未来能与Rambu?相抗衡的内存发展的一个方向。
参考资料
DDR4 内存是什么?- 高性能 | 金士顿
DDR3/DDR4同时存在-驱动之家
好了,关于“内存技术”的话题就到这里了。希望大家通过我的介绍对“内存技术”有更全面、深入的认识,并且能够在今后的实践中更好地运用所学知识。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。